Chapter 3

Linear acceleration and
Relativity

when world-lines
are
not straight

So far we have only considered objects moving uniformly relative to some
inertial reference frame. Such objects have straight world-lines in Minkowski
spacetime. It then follows that objects undergoing acceleration should have
curved world-lines. Although accelerated frames of reference are not strictly
part of special relativity, we will investigate them as a link between special an
general relativity. Before we go there, it will be useful to consider a different
way of picturing spacetime—the so called space-propertime diagram.

3.1 Space-propertime diagrams

The usual way of drawing spacetime diagrams is to use coordinate time
versus coordinate space. Some interesting insights can be gained by drawing
propertime intervals against coordinate space intervals. Such diagrams are
also known as Brehme diagrams.

In simple terms it means that if Jim is stationary in the inertial coordinate
system and Pam is moving uniformly relative to him, we plot Jim’s space
intervals and Pam'’s propertime intervals against each other. Such a com-
bination has been described by some authers, e.g., [Thorne], as “my space
and your time”.

One of the consequences of using this curious mix of coordinates is that one
can divide ‘my space’ by ‘your time' and get an answer that exceeds the
speed of light. Never the less, if one use it with caution, space-propertime
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CHAPTER 3. LINEAR ACCELERATION AND RELATIVITY 51

diagrams are very useful and sometimes surpass the insight that can be
gained from normal spacetime diagrams.

If Pam is also moving uniformly, we can plot Pam’s space intervals and Jim's
propertime intervals; it gives an equivalent, yet mirror-imaged picture, as
shown in figure 3.1.
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Figure 3.1: A space-propertime diagram where Pam moves uniformly at 0.8c relative
to Jim (left) and where Jim moves uniformly at -0.8c relative to Pam (right). Note that

the distances and times are intervals between events.

The figure is drawn for a very fast relative velocity (0.8¢c). What is im-
mediately obvious, is that the slope of this coordinate time arrow (t) is
less than 45 degrees (at least for positive velocities). Contrast this with
Minkowski spacetime diagrams, where the slope of the (positive) speed of
light is exactly 45 degrees.

What is the slope of the space-propertime arrow for light? The answer is
zero or 180 degrees, depending on direction. This is so because a lightlike
interval between two events represents a zero propertime interval.

The angle that the time arrow makes with the propertime axis (7) is

¢ = —arcsin(x) = — arcsin(v/c),
in accordance with the answer to the question above, where positive angles
are taken as per the usual convention.

We will use the space-propertime concept extensively in the discussion of
accelerated objects that follows. We will see in later chapters that gravita-
tional acceleration is also easily visualized in space-propertime diagrams.

3.2 Accelerated frames of reference

It is obvious that if objects are accelerated and their speeds change relative
to the reference frame, they must have curved space-propertime arrows.
Curves are normally characterized by curvature or radius of curvature and
a centre of curvature, all of which may change along the curve.

A circle is the simplest case, where the curvature is constant and equals
the inverse of the radius of the circle. The centre of curvature is simply
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the centre of the circle. Most other curves can be broken up into a large
number of circle segments, each part of the so called circle of curvature
for a point on the curve.

A straight line is an obvious exception, because the curvature is zero, with an
infinite radius of curvature. We will use the circle of curvature to construct
space-propertime diagrams for accelerating frames of reference, a simple
example of which is shown in figure 3.2.

This is a circle segment and the curve has constant curvature 1/R. Constant
curvature does however not represent constant acceleration—not in the rest
frame, neither in the accelerating frame. The reason for this will become
clear later in this section.
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Figure 3.2: The wordline of an accelerating frame, shown here with a constant
curvature around the centre of curvature and radius of curvature R. The curved worldline

(0, At) of the accelerating frame has the same length as the A7 axis length (0, A7).

3.3 Transformation of acceleration

As a first step in studying accelerated frames, we need to know how to trans-
form an acceleration measured inside a moving frame of reference back to
the inertial reference frame. The acceleration X’ measured inside a moving
frame x’ transforms to the rest frame as

%= (1-%2)2 ¥, (3.1)

where X is the instantaneous speed of the accelerating frame relative to
the inertial frame of reference. This result is given as face value, but it is
analyzed further in the box on page 62.

Jondl . T _
The value (1 — %2)2 is the velocity time dilation factor. Therefore, the
rest frame measures an acceleration that is three factors of velocity time
dilation smaller than what is measured inside the accelerating frame.

As an example, accelerate a test object at 1g (from rest) inside a spaceship
that is moving uniformly at 0.6¢ relative to the inertial reference frame.
Assume that the acceleration is in the direction of motion. An observer
stationary in the reference frame will measure the test object's initial acce-
leration as

. 2\ 3

%= (1-0.6%)2 =0512g.
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This will also hold for the case where the whole spaceship is accelerating rel-
ative to the reference frame. The velocity will then be changing continously,
so the transformation only holds instantaneously.

3.4 The effect of acceleration on time

Let the spaceship accelerate uniformly at 1g as measured by some form of
accelerometer on board of the spaceship. Let Pam ride the accelerating
spaceship, while Jim remains stationary in the inertial reference frame.

Jim will measure Pam’s acceleration as declining with her speed until, as she
approaches the speed of light relative to him, he will observe her acceleration
to approach zero.

In Pam'’s (accelerating) frame of reference, the measured acceleration will
however remain at 1g for as long as her ship’s propulsion system functions

properly.
If Jim take Pam’s constant acceleration (Xp), he can transform it to his
frame of reference as
. N
x5 =(1-%%)2 %,
where x is Pam’s changing relative speed at any moment.

Jim then integrates this expression twice with respect to time and finds the
relationship between the space distance (x) that Pam travel in his frame and
the proper time (7) on board her ship for any given constant acceleration.

In other words, Jim can plot a space-propertime diagram for Pam’s ship.
The result of the double integration is the exponential function*
*Relativists call this ‘hyperbolic motion’ and writes it as x = % (e.g.,

[Thorne], notes section, referred to page 37), which boils down to the same thing.

% (3.2)

X =

The function is shown graphically in Figure 3.3.

XJ

Figure 3.3: The space-propertime path for an object accelerating at a constant rate

X, as measured in the accelerating frame.
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It is not easy to extract Pam’s propertime (7) out of the equation. Therefore
it is left in the reciprocal form (x as a function of X and 7).

For a very long space trip, even with moderate acceleration, X7 > 1,
meaning (e~ *7 — 2) becomes negligibly small compared to *7.

The equation for the space interval in Jim’s frame then reduces to

Xy~ E—. (33)

From this equation Pam’s time interval 7 can be easily extracted as

~ ln(2XXJ)
We will later use these approximations to analyze long duration space travel
under constant acceleration.

Now back to the curve of figure 3.3. It is clear that the curvature is at a
maximum at the origin (x7, 7 = 0) and at a minimum when x; is large. At
the origin, the radius of curvature can be shown to be Ry = 1/%.

At other points on the curve, the radius of curvature is enlarged by a factor
1/(1 —%?%), as discussed later in the chapter.

Of further interest is the fact that the length of the curve equals the coor-
dinate time (Jim's time) that elapsed. This length is given by

. e—)"(T)

= (3.5)
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Figure 3.4: Circles of curvature along the acceleration curve can be obtained from
the slope of the curve. The velocity x is a function of the slope of the curve and with
the velocity known, the radius of curvature R and the centre of curvature can be found
geometrically. From the equation for R it is clear that as velocity X tends to the speed of
light, the radius of curvature R will tend to infinity and the curvature will tend to zero,

meaning acceleration relative to the rest frame (x7') will tend to zero.
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The centre of curvature for any point is found by drawing a line normal to
the curve in the direction that the line curves and with a length equal to
the radius of curvature R. In order to find the radius of curvature, we need
both the velocity (x) and the acceleration (X') at that point of the curve.

We know the acceleration and the velocity can be found from the slope of
the curve, because the slope represents the velocity vector at that point.
Once we have velocity and acceleration, the radius of curvature is known and
we know where the centre of curvature is located, as shown in Figure 3.4.

When we do not have a curve and want to construct it from scratch, the
method is similar. The simplest algorithm involves keeping track of the
angle ¢ through which the velocity vector has turned, as shown in figure 3.5.
Decide on a time increment At and from the old curve position (p) and the
old centre of curvature, draw a circle segment At, giving Ap = At/R.

You now have wne = @ + Ap. For this new position, find the new radius
of curvature, which together with ¢, gives the new centre of curvature.
The process can then be repeated for as many cycles as you like. By making
At very small, a highly accurate curve can be obtained. The box on page 64
gives a programming algorithm for constructing such a curve.

The algorithm is simplified by first doing a A rotation with distance R on
the x-axis of a ‘dummy’ coordinate system x, ¥, obtaining Ax and Ay. Then
a coordinate system rotation is performed through the angle ¢, giving the
space and propertime movements Ax and A7’. The construction method of
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Figure 3.5: Construction of the acceleration curve in space-propertime. The coor-
dinate time interval At together with the current radius of curvature R determines the
new position on the curve and also Ay, giving the new ¢, which determines a new radius

of curvature and a new centre of curvature.

finding the space-propertime curve for an accelerating frame is useful when
the acceleration changes with time in a complex way. If the acceleration is
kept constant, it is easy to calculate values straight from the equations.

Using the approximate formulas, we will now proceed to do a few interesting
calculations.

Firstly, we will work out how long (in spaceship propertime) it will take a
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spaceship, accelerating at a comfortable ‘one earth gravity’ (1g), to travel
a distance equal to the radius of the observable universe.

Secondly, we will determine how far the ship will go in the expected pro-
ductive lifetime of a human spacefarer aboard.

If we work in geometric units of years, then 1g equals about 1 lightyear /year?,
so X ~ 1. The radius of the observable universe, in light travel time, is
presently 15 x 107 lightyears at most.

The proper time needed to travel a distance equal to the radius of the
observable universe is

7~ In(2x%)/% = In(2 x 15 x 10%) ~ 24 years,

well within a productive human lifetime.

In normal reference frame time though, the journey would take as long
as the present age of the universe. Assuming a near constant expansion
rate, the observable universe would by then have grown to about double it’s
present size.

Next, let us find out how far a human spacefarer, who keeps up 1g accele-
ration all the time, can go in about 30 years of ‘productive’ propertime.

X = eXT//Zi = ¢39/2 ~ 5 x 10" lightyears,

about 300 times the radius of the observable universe. This means that if
the universe were not expanding, our spacefarer could possibly have circum-
navigated the entire universe many times!

But what is the use of space-travel at the nearly the speed of light? One
will not be able to observe much! There is a space travel ‘trick’ for reaching
a distant star system in relative comfort and then to stop there. This is so
that one can observe what is going on.

The trick is to accelerate half the distance there at 1g and then reverse the
engine's thrust. This way you can decelerate at 1g for the second half of
the way and ‘stop’ near the star system. Well, approximately, at least. You
should be able to observe, despite some residual velocity.

What will be the distance that you can reach if you still have say 30 years of
expected life left? We shall work out how far you get in 15 years of constant
acceleration and then double it, because the deceleration phase will take as
long as the accelerating phase. The answer is

x ~ 2 x €'%/2 ~ 3 million lightyears,

which is not all that far on a cosmological scale. The Andromeda galaxy,
part of our Local Group of galaxies, is some 2 million lightyears away. If
you time your mid-point carefully at around 14.5 years, you can cruise to a
‘stop’ somewhere inside Andromeda.

An interesting question: what maximum speed, relative to the reference
frame, would you have reached at the halfway mark? The speed after a
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long time of sustained 1g acceleration (X ~ 1) can be closely approximated
by
1 (3.6)
e 2x2 "’ ’
where here x is the coordinate distance to the halfway point (about 10°
lightyears for the trip to the Andromeda galaxy).

The speed works out to x &~ 0.9999999999995. That's twelve nines after
the decimal point—closer than 1 part in 10'? from the speed of light!

All the above calculations are in the realm of science fiction. Why? Because
of (amongst other things) the following problem - where do we find a drive
for the spaceship that can keep up even the modest acceleration of 1g for
tens of years?

The energy required for this sort of mission cannot be carried on board the
spaceship, because to get that close to the speed of light, we will have to
convert just about every gram of mass of the entire spaceship into energy
at 100% efficiency - which is an impossibility.

So the energy must come from some external source. How about tapping
radiation coming from the stars that we pass on our way? The problem is
that radiation coming from the stars behind the ship will be Doppler-shifted
virtually out of existence. The same will happen to any energy that we try
to beam to the ship from Earth.

Radiation from the stars ahead of the ship will be Doppler-shifted to white-
hot energy, but it comes from the wrong direction. Radiation pressure on
the front of the spaceship will be enormous.

There is (perhaps) one ‘plausible’ energy source though - the energy of
the vacuum. If we can borrow some energy from the vacuum during the
acceleration phase and give it back to the vacuum during the deceleration
phase, we might be in business.

How such a ‘vacuum drive’ might work, nobody knows. If only scientists
and engineers can come up with some plan! “Free energy”, unfortunately,
seems to be an illusion.*

*The Internet is ‘flooded’ with free energy schemes, some of them proposing the

energy of the vacuum. So far, no credible schemes have surfaced.

Back to reality. We have seen how continuous linear acceleration slows
down the clock on board a spaceship. Inevitably, the question must come
up: is it the acceleration itself that does the trick, or is it the very high
relative velocity that results from the continious acceleration?

The answer to this question is not an easy one. Acceleration is an absolute
thing - it can be measured on board the spaceship with no reference to the
outside world. Velocity is a relative thing that can only be measured with
reference to the outside world.

The next section attempts to answer this question.
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3.5 Desynchronization revisited

Looking at the space-propertime diagram, e.g., figure 3.4, it appears as if
it is the velocity that causes the relative slowing down of the clocks. The
acceleration is just the agent that creates the relative velocity.

On the other hand, looking at the approximate equation for propertime,
7/ &~ In(2xX)/X, it appears as if the acceleration X is the decisive factor.
But then, speed is the first time derivative of acceleration, so in a way we
can use them ‘interchangeably’.

By far the simplest way to comprehend the situation is to assume that
linear acceleration itself has no effect on the rate of clocks and that it
is the resulting relative velocity that causes relative time dilation and a
desynchronization of clocks.

The following scenario illustrates the point. Assume that we have a small,
incompressible laboratory floating in free space with a master clock on the
floor of the laboratory.

Now set up a ‘repeater’ for the ground clock’ against the ceiling, which we
slave to the floor clock as follows: the floor clock transmits laser light pulses
to the repeater, with a pulse repetition frequency (PRF) derived from the
floor clock's stable frequency source.

The repeater uses these pulses to increment counters that drive the repeater
display. Provided that, in setting the initial reading of the repeater, we use
the normal method of subtracting the light travel time. We are therefore
continously synchronizing the repeater with the floor clock.

Now accelerate the laboratory uniformly at a constant acceleration X, in
a direction from the floor to the ceiling. We take this as the positive x
direction.

In the time that each light pulse is in transit from the floor to the ceiling, the
ceiling picks up some extra speed due to the acceleration. The reciever is
therefore moving at a higher velocity than the transmitter. One can expect
a Doppler shift of the laser light frequency and also of the PRF.

For a short distance of mild acceleration, we can take the travel time of the
pulse as approximately h in geometric units (e.g. metres), where h is the
height of the laboratory in metres.

So, during the travel time of each laser pulse, the ceiling has picked up
additional speed xh. From the previous chapter, we know that this gives a
Doppler shift of received PRF relative to transmitted PRF of

which is the fractional rate at which the ceiling repeater will be ‘loosing
time’ against the floor clock.

After a time At of acceleration, the ceiling repeater will have lost At X h
time units. Since At X = x, the speed change of the laboratory in the

Copyright © 2006-2007: Relativity-4-Engineers.com All rights reserved world-wide



CHAPTER 3. LINEAR ACCELERATION AND RELATIVITY 59

time At, we can say that the ceiling receiver lost xh units of time, i.e., the
product of the speed change and the height of the laboratory.

If we now stop the acceleration, the repeater will start to ‘tick’ at the same
rate as the floor clock again (because there will be no more Doppler shift).
The repeater will however be xh units of time behind the floor clock, as
viewed by the inertial reference frame in which the laboratory was stationary
before the acceleration happened.

In the laboratory frame, however, everybody will insist that the repeater
is still synchronized with the floor clock—after all, the whole setup was
designed to keep it synchronized!

The analysis used so far was fairly loose, because of the simplification that
the light travel time is equal to the height of the laboratory. This will
certainly not hold for large acceleration over long distances. Further, the
accelerating laboratory is not an inertial frame and the Doppler shift calcu-
lation is not strictly valid.

Amazingly enough, when a full relativistic analysis is done, we get the same
answer in a rigorous way and it is valid for any velocity change and any
laboratory height. Figure 3.6 illustrates this point on a space-propertime
diagram.

Chx e £ ¢Secondary clock

Figure 3.6: The unity space-propertime vector v represents a clock moving at velo-
city x relative to coordinate system x,7. A secondary (synchronized) clock, stationary
relative to the primary, is located at a distance (h) from the origin, as measured in the
moving frame. Because x = sin ¢, the desynchronization offset (secondary - primary) =

—hsin(p) = —hx.

Although desynchronization must be viewed as a relative velocity effect,
there is a subtle second order effect caused directly by the acceleration.

Relative to the inertial reference frame, the laboratory suffers increasing
Lorentz contraction as it’s velocity in direction of movement increases. Rel-
ative to an inertial frame, the ceiling clock thus always travels at a lower
velocity than the floor clock and suffers less time dilation.

The effect is loosely illustrated in figure 3.7. Because acceleration has an
absolute nature, this difference can be measured absolutely.

An ‘experiment’ to test this can be done as follows: put two identical clocks
on the floor of the accelerating spaceship and synchronize them. Then move
one clock slowly to the ceiling, leave it there for a long time without any
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attempt to synchronize it to the floor clock. Finally, bring the ceiling clock
slowly back to the floor again.

When the two clocks are directly compared, the clock that spent time at
the ceiling of the accelerating laboratory will be ahead of the floor clock.
This effect is absolute as compared to the effect of desynchronization. The
latter is relative in the sense that it can only be measured over a distance,
using light or other signals that travel at the speed of light.

o unsynchronized
ceiling clock

o synchronized
© " ceiling clock

floor ceiling X

clock clock
Figure 3.7: The x7’ paths of the floor and ceiling clocks, separated by height h,
being accelerated from rest in an inertial frame of reference, where the ceiling clock is not
being synchronized to the floor clock. The ceiling clock suffers less acceleration because
of accumulating length contraction due to the increasing velocity. However, the curved
space-propertime pathlength of both clocks must be the same, i.e. = At. The only
solution possible is where the unsynchronized ceiling clock’s propertime is ahead of that
of the floor clock, as shown. The apparent x7’ position of a synchronized ceiling clock is

also shown.

This effect is directly related, but not quite equivalent to gravitational time
dilation, as will be discussed fully in a later chapter.

The described absolute effect of acceleration on the ceiling clock is much
smaller than the ‘apparent running fast’ of the ceiling clock caused by the
changing desynchronization. In just about all practical situations it can be
ignored as insignificant.

This just about wraps up acceleration in a gravity free environment. In the
next chapters, we will look intensively at gravitational acceleration.

3.6 Summary of Special Relativity

We have learned that the best way to view special relativity is by means of
the space interval and the time interval between events. This removes (and
prevents) paradoxical conclusions to be drawn. An observer that is present
at two events always measures a time interval that is shorter than the time
interval measured by any inertial observer not present at both events.

The Lorentz transformation is the ‘tool’ for transforming time and space
intervals from one inertial reference frame to another. This is possible be-
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cause the spacetime interval is a constant for any two events. The spacetime
interval is a function of the time interval and the space interval.

If the space interval exceeds the distance that light can travel in the corre-
sponding time interval, the spacetime interval is called ‘space-like’. If the
time interval exceeds the time that light will take to travel the corresponding
space interval, the spacetime interval is called ‘time-like’. The borderline
between the two is called 'light-like’ (what else?).

Momentum and energy in relativistic dynamics differ from the same concepts
in Newtonian dynamics. In special relativity, the difference is coupled to the
velocity time dilation factor. If any material object is moving at a speed
approaching that of light in a reference frame, its momentum and energy
approaches infinity in that reference frame.

In special relativity, Doppler shift of electromagnetic signals also differs
from the equivalent effect in Newtonian dynamics. We have seen that
the difference only shows up in one-way Doppler shifts. this is due to the
‘absolute rest frame' effects of Newtonian dynamics. In two-way, round trip
signals, the rest frame effects cancel out and the two theories mentioned
gives the same result.

Lastly, we have examined linear acceleration in this chapter. Acceleration
does not affect atomic clocks directly. However, the fact that the speed of
the accelerated clock changes relative to whichever inertial reference one
chooses, causes an effect on clocks.

We have seen that the one-way distance that could be accomplished in
a realistic human spacefarer’s lifetime is extraordinary... provided that the
traveler’s spaceship is linearly accelerated to very close to the speed of light.

If the ship is continously being accelerated, its average speed will be very
close to the speed of light in virtually every inertial frame of reference.
Hence the ‘longevity’ of the spacefarer as calculated in an inertial reference
frame.

Having had a taste of acceleration in the gravity-free environment, it is now
time to move on to general relativity, the realm of gravity and gravitational
acceleration. The next seven chapters are devoted to the this very important
part of physics—important because we are all experiencing the effect of
gravity every moment of our lives... well just about!
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Transformation of acceleration details

Set up an inertial reference frame (x,t¢) and another inertial frame
(x’,7"), moving at a speed % relative to the reference frame. Now let an
observer inside the moving frame accelerate a test object with a constant
acceleration %', for a time A7’, starting from rest in the moving frame.
If the time interval is small, the test object would have acquired a speed
Ax" = %' A7’ relative to the moving frame. How will the reference frame
X, t measure this acceleration?

Firstly, the additional speed (Ax), as measured by the reference frame,
can be obtained from the law for relativistic summation of velocities, as

As x + A%
X=—>-X
1+ %A%’
Secondly, to find the acceleration measured by the reference frame, we

also need to transform the time interval A7’ to the rest frame, using the
time dilation factor, obtaining

AT
V1-%%
Now we can find the acceleration measured by the reference frame

through x = Ax/At. After a bit of algebraic juggling, we obtain the
acceleration relative to the reference frame as

At =

.o\ 3
o (1 - X2)2 /
1+ xAX
In the limit, where the time interval is so short that the change in velocity

becomes negligible (Ax’ — 0), the denominator term approaches 1 and
the transformation equation approaches

% =(1-%2)2 %.

So the acceleration transformation can be viewed as three ‘velocity time
dilation’ transformations, i.e., (V1 — x° )3.
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About acceleration and radius of curvature

The first figure below shows a circular arc At, defined by ra-
dius of curvature Ry, rotated through angle Ay off the x-
axis. In the limit At,Ap — 0, the results are as shown be-
low. It is the same as the Newtonian acceleration for an object
moving at the speed of light around a circle with radius Ry.

1/
At /

Ax Ro cos(Ap) Agp

!
centre of X, X

Az = Ro(1 — cos(Ag))  curvature
At = Ro Ay
If Ap — 0, then [1 — cos(Ap)] — (Ap)2/2, and
. EX/T,_i_e:/X/T,_Q

2%
The above is valid for acceleration from a position of rest relative to the
reference frame. Once the object has picked up some speed relative to
the reference frame, the velocity vector makes an angle ¢ with the 7/-axis
and the line to the centre of curvature makes the same angle with the
x-axis. We know that ¥ = %/(v/1 — %x?)3 = %' cos® p, so the radius of
curvature at angle ¢ must be R = 1/(X’ cos® ¢) x cos ¢ = 1/(X' cos? p),
shown below in inverse (acceleration) form.

7_/

LS.

cosp

% = %/ cos®

©

1/R =% cos? ¢
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Algorithm for programming a relativistic acceleration
curve by using radius of curvature R

Understanding of the algorithm requires some programming experience,
as it is written in a form of pseudo code. Text starting with “ is a
comment and not part of the algorithm.
Start Algorithm
Initialize the following variables as double precision floating point:
acc = value of choice ‘“acceleration X’

dt = value of choice  “time interval At

R =1/acc “initial radius of curvature

phi =0 “initial velocity vector rotation angle ¢
dphi = dt/R “incremental rotation angle Ay

x=0 “initial space displacement

tau =10 “initial propertime displacement 7/

dx =0 “initial space increment Ax

dtau =0 “initial propertime increment A7’

dxa =0 “intermediate value Ax

dy=10 “intermediate value Ay

Repeat from here
Output x and tau to text or graphics device

dx = R x (1 — COS(dphi)) “AX after rotation
dy = R x SIN (dphi) “Ay after rotation
dxa = dx x COS(phi) + dy x SIN (phi) “Ax’ after rotation
dtau = dy x COS(phi) — dx x SIN (phi) “AT’ after rotation
x =X + dxa “new x

tau = tau + dtau “new T

phi = phi + dphi “new

R = 1/(acc x (COS(phi))?) “new R

dphi = dt/R ‘new Agp

Repeat until terminating condition is satisfied
End Algorithm

With a suitably small value for At, this algorithm can be used to
calculate the space-propertime curve for an accelerating object to any
accuracy you want. Further, a new acceleration can be calculated
for every cycle of the programmed loop to simulate a rocket with
changing acceleration as it’s fuel burns up.
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