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Chapter 12

Introduction to Cosmology

how
engineers might view
the cosmos

Cosmology is the study of universe at large. It is an attempt to make
physical sense of the material cosmos, where it came from and where it is
heading.

This text is written for the engineers and the likes of them. One could
ask the question: why would engineers be interested in cosmology? For one
thing, the cosmos can be viewed as one extremely large machine that follows
the laws of physics in it's operation. Machines of all sorts, and especially
the design of such machines, are the domain of engineers.

Further, the ‘cosmic machine’ fulfils the very practical purpose that it pro-
vides a home for mankind to live in. So it is natural that we would like
to know how the machine works. The problem is that it is somewhat as if
we are elementary particle-sized beings, living on one of the spinning ball
bearings in this gigantic machine.

With the little that we can observe from where we live, we try to reverse
engineer the machine—at least the cosmologists do, if they will forgive
me for the engineering approach. In this approach, the objective is to
reconstruct the engineering specifications, algorithms, parts lists and raw
material requirements of this complex machine.

12.1 Cosmic design

Taking their cues from the cosmologists, engineers may possibly view the
cosmological ‘machine’ (from inside out, or ‘bottom-up’) as follows. Our
‘ball’, the Earth, is an elementary part of a basic component (the bearing),
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which we call the solar system. Many such basic components make up a
‘sub-assembly’ called the Milky Way galaxy.

We know that there are other similar galaxies that are gravitationally coupled
to our Galaxy, amongst them the Andromeda galaxy and the two Magellanic
clouds. So the ‘sub-assemblies’ are integrated into a larger ‘assembly’ of
galaxies that is called the Local Group.

There are other groups of galaxies, some much larger than our Local Group,
which are called clusters due to their size. The Local Group can be viewed as
a ‘mini cluster’. The groups and clusters are integrated into a ‘sub-system’
called a supercluster.

Our Local Group is part of the Virgo supercluster, so called because the
Virgo cluster is an extremely large collection of galaxies that we observe
in the direction of the Virgo constellation of stars. There are many such
superclusters that we can observe and they are all integrated into a larger
‘system’—the observable universe.

The integration seems to be via connecting elements made of filaments or
sheets of galaxies, leaving huge, bubble-like volumes of empty space between
them. The empty ‘bubbles’ are called cosmic voids.

At present it does not seem as if there are larger scale substructures in the
cosmic ‘machine’, so for the purposes of this book (and for the benefit of
the system engineers), this is our ‘system’.

This is a gross oversimplification of the structure of the real cosmos, but
it serves to illustrate the idea. Figure 12.1 depicts the simplified hierarchy
and some characteristic sizes of the system.
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Figure 12.1: A simple hierarchical view of our place in the cosmos and some char-
acteristic sizes. The leftmost circle represents the entire universe, of unknown size. The
other circles represent small portions of the circle on it's left. Only major or important

components are shown in each circle.

A supercluster is in diameter some 10!! times as large as our solar system.
Further, a typical supercluster has a diameter of almost 1% of the observable
universe. This gives some idea of how large a supercluster actually is.

Everything up to groups and clusters of galaxies seems to be gravitationally
bound in the sense that their components seem to be orbiting the centre of
gravity of the structure.

Superclusters do not appear to be gravitationally bound in this sense, due
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to the large distances between the clusters and the fact that gravitational
influence diminishes with the square of distance. For example, the distance
between us and the Virgo cluster is presently some 60 million lightyears.
The Virgo cluster, being so massive, does gravitationally influence other
clusters in the supercluster, but not in the sense of creating bound orbits.

The approximate diameters and distances that were quoted above are all in
units of light travel time, as is implied by the units light years. We will later
see that light travel time does not necessarily mean the physical distance
between objects.

12.2 The expanding universe

The expansion of the universe is normally visualized by means of a balloon
that is being inflated. A better and perhaps, by modern knowledge, a more
correct visualization is that of an infinitely large lattice of rods, normally
referred to as Escher’s infinite lattice [Gribbin, page 43]. Figure 12.2 shows
just one (cubic) element of such a lattice, consisting of nodes (the black

dots) and connecting rods.
y z

/

Figure 12.2: One element of Escher’s lattice, with rod length £. Repeat this element

indefinitely in all directions and we have Escher’s infinite lattice.

Imagine this element being duplicated indefinitely in all directions and we
have Escher’s infinite lattice. Let the rods represent space and the nodes
superclusters, with the length of all rods being £ units at the present time. If
in every time increment, say At, all rods were to lengthen by some constant
amount, say A/ units, the recession speed between any two adjacent nodes
will be

vy = Al/AL

units (see figure 12.3). The recession speed between any node and the
second node from it will be

vy = 2A0/ At

units, because between them there are two rods that each lengthens by A¢
units in time At. In general we can say that the recession speed between
any two nodes is

v, = nAl/At = nk,
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where n is the number of rods between the nodes and & = Af¢/At, which is
constant, as defined above. This is essentially Hubble’s law for the recession
velocity of galactic clusters, discovered by Edwin Hubble in the early 1920's.

to 4 At o tTAL |+ AL

to

Figure 12.3: Two views of a one dimensional portion of Escher's infinite lattice, one
for time to and one for time tg + At. In the time At, distances between nodes stretch
AL

from £ to £+ AL. The recession speed of the first node form the origin is v, = X7 =k

and the speed of the second node from the origin is v, = 2A—Af = 2k.

The law states that the apparent recession velocity of a cluster, as measured
by it's cosmological redshift is directly proportional to it's distance from us.
The constant of proportionality has been aptly named the Hubble constant,
H, ie.,

v, = sH,

where s is the distance to the cluster as measured by light travel time. Since
it is possible that H may change over time, the present value of the Hubble
constant is usually denoted Hj and is expressed in km/s per Megaparsec
(Mpc).

One Mpc is about 3.3 million lightyears. By the turn of the century, the
measured value of Hy has converged to around 64 km/s/Mpc. A value of
about 73 km/s/Mpc has lately appeared to be the ‘best buy’, but it may
still change in time to come.

So we will stick, for the time being, to the older value. This means that a
galaxy at a distance of 1 Mpc (or 3.3 million lightyears) should appear to
recede from us at a radial speed of 64 km/s.

Now this is one enormous speed if reckoned by terrestial standards. Un-
fortunately for astronomers, this is a rather low velocity by astronomical
standards. Earth is moving at about 30 km/s in it's orbit around the Sun.
The Sun itself is moving at over 200 km/s around the centre of the Milky
Way.

Now add in the Milky Way's orbit around the centre of gravity of the Local
Group and the fact that the whole Local Group seems to be moving at
around 600 km/s. This movement is in a direction towards a presumed
conglomeration of superclusters called the ‘Great Attractor’.

You can imagine the problem. To extract the pure Hubble flow (the 64
km/s in the example) from the so called peculiar motion of galaxies of up
to 600 km /s, is a difficult task. It is only for galaxies or clusters at distances
of a few hundred million lightyears from us that the Hubble flow dominates
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the observed velocity.

For example, a cluster at 330 million lightyears will have a Hubble flow of
about 6400 km/s, which is some ten times that of the peculiar velocities.
How distances of hundreds of millions of lightyears are measured will be
discussed in a later chapter.

Our constant k is essentially the same thing as H, although we use a
‘quantized’ distance in the form of the number of ‘Escher rods’ between us
and the cluster. Make the rods short enough and k is indistinguishable from
H, at least for the present state of expansion of the universe.

If we arbitrarily assume that at present the Escher rods are one lightyear
long and we express velocity as a fraction of the speed of light (so that
velocity is a dimensionless quantity and the speed of light is unity), & has

the units lightyear—!.

The conversion from H to k involves changing km/s to a fraction of light
speed and converting Mpc to lightyears. The result is

k~ H x 102 lightyear .

A very interesting (but quite naive) question to ask at this point is: if the
universe works like Escher’s infinite lattice, how far can an object be from
us before it's recession velocity reaches the speed of light? It is just the
inverse of k, i.e., 10'2/64 ~ 1.6 x 101° lightyears.*

*Recall that v, = nk, so that n = v,./k. Here v, =1 and n is the number of rods of

length 1 lightyear each.

This roughly correlates with the radius of the observable universe—we can
presumably not observe anything that, due to expansion of the universe, is
receding from us at a speed higher than the speed of light. We will later
see that this statement is a bit misleading in an expanding universe.

If Escher's infinite lattice always followed the above law in the past, then
there must have been a time when the length of all the rods between the
nodes must have been zero. How long ago would that have been? We
simply calculate how long it would take a rod, starting at zero length, to
reach it's present length (which is one lightyear according to our units).*

*Recall that k = Al/At, where here Al =1 lightyear. |

The answer is again
t=1/k=10"2/64 ~ 1.6 x 10'° years,

the same numerical value as the one that we obtained above for the radius
of the observable universe. It makes some sense that one can observe things
only as far as light has had time to travel since the ‘beginning’.

With rod lengths close to zero, the ‘beginning’ must have been a place
approaching infinite density, but possibly still of infinite size—an infinite
number of rods of infinitesimal length still add up to an infinite size!
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On the other hand, our observable universe is of finite size and at the
beginning this ‘patch’ of the universe must have been very close to a single
point. Do we know where that single point is (or was)? Yes, it is right here
where we are, because our present place must have been at that point—
just like every other place in our observable universe must have been at that
point. The ‘single point’ has become the observable universe.

The simplistic ‘Escher model’ does not represent the present thinking about
the dynamics of the universe. As we shall see in chapter 16, it comes very
close (at least for the present epoch of expansion) to one of the ‘latest and
greatest’ theoretical schemes that fits observational evidence pretty well.

12.3 The cosmologist’s approach

In this introduction, only some of the principles and symbology that cos-
mologists use in their technical treatment of cosmic models will be given.
A more detailed treatment will follow in later chapters.

Firstly, cosmologists prefers to work with what they call comoving coordi-
nates, a fancy name for a rather simple concept. They are effectively just
counting the rods in the ‘Escher model’.* The number of rods between two

*There is no official ‘Escher model’ of the universe—it is just a convenient reference.

any two nodes obviously remain constant, no matter how much the rods
expand, or shrink for that matter.

This is equivalent to the comoving distance between clusters and is denoted
by the symbol 7,* which is obviously not the same as the proper distance

*Comoving distance is also denoted by the symbol x. See table 12.1 below.

between the two clusters. Proper distance is measured by a non-stretching
ruler, which can be done by measuring the time an electromagnetic signal
takes to propagate the distance.

The proper distance increases in an expanding universe and cosmologists
obtain it by multiplying the comoving distance (r) by a time varying ez-
pansion factor, denoted by a(t), i.e., a as a function of time. The proper
distance is thus

¢ =a(t)r,

where the expansion factor a(t) is chosen so that at present, a(ty) = 1.

When the rods of Escher was half their present size, then a(t) = 0.5.
As an example, a galaxy that today has a comoving distance of » = 100
million lightyears will have a proper distance a(to)r = 100 million lightyears,
because a(tp) = 1. A long time ago, when the expansion factor was a(t) =
0.5, the comoving distance of the galaxy was still 100 million lightyears, but
it's proper distance was a(t)r = 50 million lightyears.
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Cosmologists sometimes drop the ¢ in a(t), and just refer to the time varying
expansion parameter as a. The expansion factor a(t) is of great importance
in cosmology, because it tells us how the expansion has changed over time.

The 'Escher model’ is essentially a flat, Euclidean space model. Space may
not be completely flat, but may have curvature. Curvature was treated
thoroughly in the first part of this book, on relativity. We will ‘borrow’
from general relativity a hypothetical three dimensional ‘hyperspace’ and
then mathematically embed normal three dimensional space is into this
hyperspace domain.

Now normal space can curve into the extra (hyperspace) dimensions, just
like the two-dimensional surface of the Earth curves into the third space
dimension. With this postulate, one can construct an Escher lattice, so
that it has curvature, yet with all rods having the same length. This is
impossible in normal three dimensional space.

It is also impossible to visualize such a lattice, let alone sketch one. We
are forced to drop one space dimension and consider only two dimensions
of space as all there is. The third dimension can now be ‘viewed' as one
dimension of hyperspace.

‘Viewed' is actually a bad word choice because the third dimension is now
hypothetical since all observers must be considered two dimensional beings.
Such observers cannot directly view the third dimension. We will later see
that they can, in principle, measure the curvature of the two dimensional
surface, however.

Assume for now that hyperspace is a perfect sphere and that our normal
space is the surface of this hypersphere. On the surface of this sphere, we
now try to build a two dimensional ‘Escher lattice’. Using curved squares
will not work in this limited form of hyperspace, but we can fit eight curved
equilateral triangles perfectly onto the surface of the sphere, in such a way
that they cover the complete surface with no overlaps or gaps. Figure 12.4
shows the four triangles on half of the sphere.

One triangle seen from
‘vertically above’ it’s centre.
It can be divided into four
equilateral triangles again.

Figure 12.4: The solid lines (left) represent four equilateral triangles fitted onto half
of a sphere. All inside angles of each triangle span 7/2 radians, so that inside angles of
each triangle add up to 37 /2 radians, instead of the 7 radians of a flat triangle. Each

triangle can be subdivided as shown on the right.

Each of these triangles can be subdivided into four equilateral triangles
again, as shown on the right of the figure. This subdivision can be repeated
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as many times as one wishes.

Every resulting ‘connecting rod" will curve towards the centre of the sphere
with the same curvature as the original (quarter circumference) rods. In the
limit, when the number of subdivisions approach infinity, the infinitesimal
little triangles will be indistinguishable from normal flat, Euclidean triangles
of the same size.

Their inside angles will add up to 7, as near as can be. However, their sides
will still have the same curvature, with a radius of curvature equal to the
radius of the sphere. The curvature may just not be detectable, due to the
tiny size of the triangles in comparison to the radius of the sphere.

The triangles do not have to be tiny—one can just make the radius of the
sphere extremely large and the same effect will appear with large triangles.

The reason for laboring this rather trivial point, is that the cosmos may
perhaps be somewhat like this, with our observable neighborhood equivalent
to one of the triangles, apparently perfectly flat, due to a very large radius
of curvature.

If the curvature is positive, the universe is called ‘closed’, since it is finite, yet
unbounded, like the surface of the sphere. In an expanding universe, positive
curvature (traditionally) means a universe with an expansion rate that is
insufficient to sustain the expansion against the mutual pull of gravity. It is
expected to reverse the expansion at some time in the future and collapse
towards an infinitely dense state again.

Curvature can also be negative, which can be thought of as the ‘inside’ of
a hyperbola, as will become clearer later. Such a universe is called ‘open’
and is taken to be unbounded, because it is infinite in size.

Traditionally, negative curvature means an expansion rate that is large
enough to sustain the expansion, against the mutual pull of gravity, for-
ever. A universe with zero curvature is traditionally called ‘flat’ and is also
unbounded and infinite.

Zero curvature means that the expansion rate is just large enough so that
the expansion rate will decrease asymptotically to zero, so that it will just
not collapse. We will later see that these traditional definitions have become
a bit blurred lately, due to the discovery that the universe may be ‘flat’, yet
it may actually be expanding at an increasing rate!

The symbology that cosmologists use to describe the curved, expanding
universe is illustrated in figure 12.5, where just one of the curved ‘Escher
rods’ is shown—the circular arc between an observer and a distant object.

The time varying radius of curvature, denoted by R(t) is equivalent to the
radius of the expanding hypersphere. The present radius of curvature is
usually written as R, as shown in the figure. The expansion parameter a is
now a(t) = R(t)/R, meaning the radius of curvature at time ¢ as a fraction
of the present radius of curvature.

The comoving distance angle x has the same meaning as the linear comoving
distance r used in the linear ‘model’, because for any given object, the angle
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Observer

a=1% xR
Rsin(x) Distant
object

a = 051X
R
X

Figure 12.5: The symbology of curved space for a closed cosmos with positive
curvature. R is the present radius of curvature, x the comoving distance and a the
expansion factor. For a flat cosmos, R tends to infinity and x tends to zero, but xR
remains finite. Rsin(x) is shown because it is used in cosmological equations for the
closed cosmos. For the open, negative curvature cosmos, sin(x) is replaced by sinh(x),
where x — ix and R — —iR.

X remains constant as R(t) grows with the expansion of the universe. The
comoving distance xR is equivalent to the proper length of a stretched
Escher rod.

The reader may have found the last paragraph a little confusing and the
author can sympathize with that—cosmology can be very confusing, es-
pecially since the specialists seem unable to agree on the terminology and
symbology for presenting the subject. As an example, two modern textbooks
that was consulted, [Peebles] and [Peacock], use different terminology and
symbology, as listed in table 12.1.

The differences in symbology are striking and there are some difference in
terms as well. It must be said that Prof. Peacock uses ‘scale factor’ and
‘radius of curvature’ somewhat interchangeably, while Prof. Peebles does
not use the term ‘scale factor’' at all. In their defense, one must say that
contemporary cosmologists suffer under a huge legacy of well established
terminology and symbology—uwell established, but not very consistent.

This text uses the terms and symbology from Prof. Peebles because they
are in some sense more intuitively ‘accessible’, e.g. ‘expansion factor’ rings
a bell that ‘normalized scale factor’ does not. One might however argue
that, judging by the publication dates, Peacock's textbook may be the ‘more
modern’ one.

12.4 An engineering approach

Engineers are meant to take the science that scientists develop and turn
it into items of practical use. In cosmology, the engineer’s role is usually
limited to designing equipment and machinery that can be used to measure
the universe at large, so that cosmologists can do their science.
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Comparison between some Peacock and Peebles parameters

Parameter name ‘ Peacock | Peebles | Units

1 Comoving distance (an- r X rad.
gle)

2 Present scale factor Ry - Mpc

3 Present radius of curva- - R Mpc
ture

4  Present comoving dis- Ryr R x Mpc
tance

5  Present normalized scale a - -
factor

6  Present expansion factor - a -

7  Time varying normalized a(t) - -
scale factor

8  Time varying expansion - a(t) -
factor

9  Time varying scale factor | R or a(t)Rp - Mpc

10 Time varying radius of - R(t) or a(t)R | Mpc
curvature

Table 12.1: A comparison between some of the parameter names and symbols used
by Peacock and Peebles respectively. Inside the double rows: 2/3, 5/6, 7/8 and 9/10, the
two names describe the same parameter. This book uses the Peebles parameter names

and symbols.

When working in this type of environment, engineers need to understand
what cosmologists are speaking about and probably need to understand
the physics and mathematics that cosmologists are using, at least to some
degree. Engineers in other environments have little reason to understand
the cosmologists; that is unless they have an interest in the cosmological
‘machine’.

For their benefit the physics can be presented in a simplified form. The
spherical model of fig. 12.5 can be replaced by a flat* model without

*Here ‘flat’ means using non-spherical mathematics and not ‘flat’ in terms of large

scale curvature.

loosing much of the principles involved.

Later chapters will show that this model, using rather simple mathemat-
ics, yields very closely the same results than the more complex standard
cosmological mathematics.

In the next chapter, we will turn to those parameters, but before we go
there, a few introductory words about the units of measurement used in
this text.
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12.5 Cosmological units

Th Sl convention of units is useful for ‘ordinary’ mass, time and distance, but
becomes a bit cumbersome when working with cosmological mass, distance
and time. Astronomers like to use the unit ‘solar mass’ for expressing mass
in the cosmos and parsec (pc) for distance. A solar mass is self explanatory
and a parsec is the distance at which an object would have an annual parallax
of one arc second.

Annual parallax means the peak (not peak to peak) shift in angular position
of an object against the very distant stars, observed over a period of one
year. So the baseline is the radius of Earth's orbit (~ 150 million kilometres)

and one parsec ~v —20million km__ -, 3 (951013 kilometres or 3.2616 light
tan (one arc second)
years.

Because the parsec and it's common multiples, e.g. the kiloparsec (kpc)
and the Megaparsec (Mpc) are not intuitively understandable by novices,
popular books normally express distances in lightyears or orders of magnitude
thereof, e.g., million lightyears or billion lightyears, where billion usually
means a thousand million.

Since there are traditionally two meanings of ‘billion’ (USA 10° and UK

10'2),* this text will adopt the ‘more engineering-like' convention of Giga-

*Oxford dictionary, 1990: “billion .... 2 (now less often, esp. Brit.) a million

million ...".
lightyear (abbr. Gly = 10? lightyears) for cosmological distance and Gi-

gayear (abbr. Gy = 10° years) for cosmological time. Cosmology books
sometimes use Ga (Giga-annum) for the latter.
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